

TITANIUM METAL T Z M ANNUAL REVIEW SAMPLE

NEW EDITION OUT NOW!

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1.0 INTRODUCTION

- 1.1 Overview of the titanium metal industry
- 1.2 Structure of report
- 1.3 Confidentiality and disclaimer

2.0 TITANIUM METAL INDUSTRY OVERVIEW

- 2.1 The titanium metal supply chain
- 2.2 History of the titanium metal sector
- 2.3 Titanium metal products overview
- 2.4 End-market applications
- 2.5 Associated markets

3.0 PROPERTIES AND NATURE OF TITANIUM

- 3.1 Titanium bearing resources
- 3.2 Mining and processing of titanium feedstocks
- 3.3 Beneficiated titanium products
- 3.4 Titanium feedstock production in 2013
- 3.5 Properties of titanium
- 3.6 Comparison with other metals
- 3.7 Processing, alloys and compounds

4.0 MANUFACTURE OF TITANIUM PRODUCTS

- 4.1 Titanium tetrachloride production
- 4.2 Titanium sponge production
- 4.3 Melting techniques
- 4.4 Mill processing
- 4.5 Titanium powder manufacture
- 4.6 Titanium recycling

5.0 ECONOMICS OF TITANIUM METAL MANUFACTURE

- 5.1 Methodology
- 5.2 Overall industry cost structure
- 5.3 Costs of TiCl₄ production
- 5.4 Costs of titanium sponge production
- 5.5 Major cost drivers and trends.

6.0 DEMAND FOR TITANIUM

- 6.1 Demand in end-use sectors
- 6.2 Commercial aerospace
- 6.3 Industrial sector
- 6.4 Defence
- 6.5 Emerging applications

7.0 SUPPLY OF TITANIUM

- 7.1 Supply developments in 2013
- 7.2 Regional distribution

8.0 INTERNATIONAL TRADE AND PRICING

- 8.1 International trade flows
- 8.2 Duties and tariffs
- 8.3-8.16

US Japan, China, Russia, Kazakhstan, Ukraine, Germany, France, UK, Italy, The Netherlands, Austria, Spain, South Korea, Taiwan

8.18 Other countries

9.0 EMERGING TITANIUM METAL TECHNOLOGIES

- 9.1 Overview of new extraction technologies
- 9.2 Cost advantages of new extraction technologies
- 9.3 Titanium quality in new processes
- 9.4 Powder consolidation, ally and product development
- 9.5 Solid freeform fabrication
- 9.6 Trends in emerging technologies

10.0 INDUSTRY TRENDS AND OUTLOOK

- 10.1 Current themes
- 10.2 The global titanium industry
- 10.3 Commercial aerospace market
- 10.4 Industrial markets
- 10.5 Defence markets
- 10.6 New technologies

APPENDIX 1 - PRODUCER PROFILES

SAMPLE OF 2013 EDITION

NEW EDITION OUT NOW!

OVERVIEW OF TITANIUM AND THE TITANIUM INDUSTRY

Common grades of titanium

The multi billion dollo	ar titanium metal	ASTM	United Numbering	Nominal composition.		Crystal	
market is examined t	from the perspective	Grade	System	wt. %	Description	Alpha	Uses
of the entire value cl	hain.			oxygen content of ASTM Grade 1	Titanium	Арпа	applications requiring very low interstitial or other impurities.
		1	R50250	Unalloyed; limit 0.18 O, 0.20 Fe, 0.03 N, 0.10C	Commercially Pure (CP)	Alpha	Applications where low iron and interstitial content provide resistance to highly oxidising, mildly reducing environments; resistant to chlorides; maximum formability.
		2	R50400	Unalloyed; limit 0.25 O, 0.30 Fe, 0.03 N, 0.10 C	Commercially Pure (CP)	Alpha	Most common CP grade; used in corrosion and oxidation resistance applications requiring higher strength and lower cost than Grade 1.
		3	R50550	Unalloyed; limit 0.35 O, 0.30 Fe, 0.05 N, 0.10 C	Commercially Pure (CP)	Alpha.	Applications similar to Grade 2 but requiring higher strength.
TRANINA METSI ANNAN PROMINIZAN	of optimativo rotana	8	R50700	Unalloyed; limit 0.40 O, 0.5 Fe, 0.05 N, 0.1 C	Commercially Pure (CP)	Alpha	Nearly interchangeable with Grade 3, but slightly higher strength and lower corrosion resistance.
2.2.3 Physical characteristics Taxium has the highest transpir-to-weight ratio of any metal. Commercial guides of stanuum have an ultimate tendis strategin of about 424 Mos, making them as strateg as terminon steel alingu while being 45% lighters for example, stanium is 65% heavier than, but more than torice that strategin of ultimatum.		100	R56400; R46401 (ELI)	Ti-6Al-4V		Alpha/Beta	Most widely used alloy; high strength and good corrosion resistance.
Certain transum allors anthere tensile strengths of more than 1,400 MPs, however, transum does loss strength when it is hasted above. 400°C. In addition to its high strength two-segler ratio, stranium metal is of such low density that, when pure, it is give ductific (appendix) is an organ-free animoment), lutrous and metallic-when is collow. The ability's high matching parts of more than 1,400° tils matching and its a vehicensy metal.	ALL CONTRACTOR	20	R54520; R54521	Ti-5Al-2.5Sn		Alpha	Excellent weldability with moderate strength.
2.3 Comparison with other metals Compared to other "light metals" including aluminium and megnesium, clanium was a very late		*	R52400	Unalloyed, with 0.12		Alpha	Comparable to Grade 2 in strength, but better crevice
entrant is the commercial industry. After Ward War 11, the US deteries sector sought literaum and demand for the metal bagant to grow. Due to its lower specific gravity compared to ion and othed, tatalum has generally base grouped with two other light metalic aluminum and magnetium. A summary commarison of the law concentration of these metalics and of hole, unsert relevant roles.	High putty of Alighemicking	18	R56320	Ti-3Al-2.5V		Near Alpha,	Excellent cold formability; used for seamless tubing.
in the global industry is given in Table 2.1. Toble 2.1: Comparison of key properties between the major light metals	preferred manufacturing process that its table for small rotate and burnspharaction. Chinese and series, which was provided based in 1950/v using technology. Takini manufacture is early the most incorrelating of the three and this has inhibited targer scale meast development. Issuevice is a word where incorrelating grantee angulars is barg placed on adverge costs and	-	R52250	Unalloyed, with 0.12 to 0.25 Pd		Alpha-Beta	Comparable to Grade 1 in strength, but better crevice
Faster Bagerises Nominian Transme Notice - - - - Atomic number 12 13 22 - - Remin weight 24-a 22 - 47.9 -<	 Bythess, terrepaire and consoling endown endowned and the second endowned y and the second endowned y and the second endowned and compounds 2.4. Processing, alloys and compounds 2.4.1 Material backgrownd 	50 53	R53400	Ti-0.3Mo-0.8Ni		Alpha	Stronger than unalloyed grades, less expensive than Grades 7 & 11; crevice corrosion resistance good but less than Pd grades at low pH.
Memory priors (°C) 650 660 3,660 Boling priors (°C) 1,105 2,467 3,287 Thermal constructivity at 30°C 1,47 235 1,7 Thermal constructivity at 30°C 1,47 236 1,7	B) uses 120 varies after transition was discussered, before puer thistory metal doubt be tasked. Is the band at 200 doubt of the solution o	10		Ti-0.5Ni-0.05Ru; 0.1 O, 0.2 Fe, 0.03 N		Alpha	Comparable to Grade 1 in strength but better crevice corrosion at low pH and in hot brine; lower cost than Pd containing grades.
The key features to notice are: • Transm's significantly lighter ultimate strength than aluminum and magnesium (strength-to-	methods user to blow-resonance and certy to easily the setup is taken metal to be produced outside the bloombry. Neurosci 1946, metallograd William Koll proved taket takens could be commencially produced by reducing TGL, with majorism. The Koll process became the standard for thesism produces and returness to staty. E it do horr de Versours and Company (Dullerg) was the Forto take the Koll process to commencialization, with a 195 date in themane. Delaware multical reduced 50 horr de versours and the state of the state o	5		Ti-0.5Ni-0.05Ru; 0.15 O, 0.3 Fe, 0.03 N		Alpha	Comparable to Grade 2 in strength but better crevice corrosion at low pH and in hot brine; lower cost than Pd containing grades.
 Organization and an environment of an environment appropriate sector. Considered the administration and respectation. Totaxium appropriate sector. Totaxium appropriate and appropriate and appropriate and the administration and final environmentation. It is more difficult to economicality produce transium metal and its alloys compared to aluministration and magnetism. 	It statutes metrick. At the same time, Canadian company, Denvision Magnitus Lumided via generating umil grantized or finand at thirds, or chanse, Weinforms (2017) og generat producer Restand Land Company (own TO), primart producer Kanson Environment) hegan experimenting with a metal plant plant in Stativerki, New Lenger 1950. The statistic of the titanium spange reason by these early processes ranged between 36–39% stanium.	G.A.		Ti-0.5Ni-0.05Ru; 0.25 O, 0.3 Fe, 0.05 N		Alpha	Comparable to Grade 3 in strength but better crevice corrosion at low pH and in hot brine; lower cost than Pd containing grades.
 Entraction of Danavam and key alloys in large-scale processes, which are carried out on a batch basis, can rell fail. The high reduction energy requirements are attributable to the propensity for high metalls to 	2.4.2 Teachern processing After transmit is entracted, is underpose a series of processing stages that involves purification, sponge production and allow creation.	102		Ti; 0.04 to 0.08 Pd, 0.25 O, 0.3 Fe	Lean Pd grade	Alpha	Comparable to Grade 2 in strength but with crevice corrosion benefits similar to Grades 7 and 11.
recombine with oxygen during manufacture. This has prompted intense research during the part 50 years for alternative production parts. Despite the alwaiss research that would arise, all three matals are still extracted using the same basic technologies that brought them into commercial use many decides age. (Magnesiam has, however, sean a recent sharps in the	Extraction: Transium concentrates are other realise of dimension ToTy. If the concentrate is the latter, is needs to be proposed of iron. These materials are put is a fluid sed-bed reactor with chlorine gas	2		Ti; 0.04 to 0.08 Pd, 0.18 O, 0.2 Fe	Lean Pd grade	Alpha	Comparable to Grade 1 in strength but with crevice corrosion benefits similar to Grades 7 and 11.
	1.0	»		Ti-3Al-2.5V; 0.04 to 0.08 Pd			Pd containing version of Grade 9 with improved crevice corrosion resistance.
		19	R58640	Ti-3Al-8V-6Cr-4Zr- 4Mo	Beta C	Beta	Cold drawable and rollable; mainly used for springs
		20		Ti-3Al-8V-6Cr-4Zr- 4Mo: 0.04 - 0.08 Pd		Beta	Crevice corrosion resistant version of Grade 19.
		21	R58210	Ti-15Mo-3Al-2.7Nb-	TiMetal® 21S,	Beta	High strength, oxidation and creep resistant; high
		23	R56401	Ti-6Al-4V; extra low		Alpha-Beta.	High ductility and damage tolerance version of Grade 5
		24		Ti-6Al-4V; 0.04 – 0.08		Alpha-Beta	Crevice corrosion resistant version of Grade 5.
- //		25		Pd Ti-6Al-4V; 0.3 – 0.8		Alpha-Beta	General and crevice corrosion resistant version of
		26		Ni, 0.04 – 0.08 Pd Unalloyed, with 0.08		Alpha	Grade 5. Comparable to Grade 2 in strength, but better crevice
				– 0.14 Ru; 0.25 O, 0.3 Fe			corrosion at low pH and high temperature. Lower cost than Grade 7.
		27		Unalloyed, with 0.08 - 0.14 Ru; 0.18 O, 0.2 Fe		Alpha	Comparable to Grade 1 in strength, but better crevice corrosion at low pH and high temperature. Lower cost than Grade 11.
		28		Ti-3Al-2.5V; 0.08 – 0.14 Ru		Near Alpha, Alpha-Beta	Improved crevice corrosion version of Grade 9 at lower cost than Grade 9.
US\$110 million		29		Ti-6Al-4V; extra low interstitials; 0.08 – 0.14 Ru		Alpha-Beta	Comparable to Grade 23 in mechanical properties, but improved crevice corrosion resistance.
titanium		30		Ti, 0.20 – 0.80 Co; 0.04 – 0.08 Pd; 0.03 N, 0.25 O		Alpha	Higher strength version of Grade 16.
market	US\$5.41 billion	31		Ti, 0.20 – 0.80 Co; 0.04 – 0.08 Pd; 0.05 N, 0.35 O		Alpha	Higher strength but lower ductility version of Grade 30
market	milled	32		Ti-5Al-1Sn-1Zr-1V- 0.8Mo			Primarily developed for toughness, weldability & seawater stress corrosion cracking resistance in naval applications, with the popular designation of TI-5111.
a l'Int	market	33		Ti, 0.4 Ni, 0.015 Pd, 0.025 Ru, 0.15 Cr; 0.03 N, 0.25 O		Alpha	Improved general and crevice corrosion resistance
	hillion	34		11, 0.4 Ni, 0.015 Pd, 0.025 Ru, 0.15 Cr; 0.05 N, 0.35 O		Alpha	Improved general and crevice corrosion resistance; higher strength and lower ductility than Grade 33.
US\$2.94 billion				0.5Fe-0.3Si			
titaniu	um	36	R58450	II-45Nb			Burn Resistant' alloy of moderate strength and very low elastic modulus
spon	ge	37		Ti-1.5AI			Improved oxidation resistance version of Commercially Pure Ti; auto exhaust applications
mark	cet	38		Ti-4Al-2.5V-1.5Fe			Strength and saltwater corrosion resistance comparable to Grade 5; hot and cold workable.
main		Noto	there are	no grades 10 and 3	©TZMI 2013	NOT FOR	REPRODUCTION

MANUFACTURE OF TITANIUM PRODUCTS

TI-METAL SUPPLY

MARKETS FOR TITANIUM

Major end markets for titanium metal

Details of each segment by region and market share

111111111

Thummun

Titanium milled products demand in commercial aerospace in 2012

"

Close to 90% of manufactured titanium sponge is used in the manufacture of titanium and titanium alloy products for commercial aerospace, industrial applications, defence and emerging applications.

SUPPLY AND DEMAND

Figure 8.3: Average TiCl₄ prices in China: 2010-2012

Cost inputs by region and segment

Figure 8.4 compares the indicative cost of titanium sponge manufact locations in 2012.

e73w 201

Figure 8.4: Indicative sponge manufacturing costs by location in 2012

EMERGING TECHNOLOGIES

INDUSTRY TRENDS AND OUTLOOK

APPENDIX

APPENDIX 1 *Producer profiles*

11

O	wnership				
A		Publicly listed on the New York Stock Exchan	nge	PROFILE	
	ddress	2 Meridian Boulevard Wyomissing Pennsylvania 19610-1339			
	Tel: Website:	+1 800 237 9655; +1 724 228 1000 www.cartech.com			CON
Ke	ey personnel	William A Wulfsohn – President and C Timothy R Armstrong – Vice Presiden		APPENDIX 1	
		Commercialization James D Dee – Vice President, Gener	Carpenter Ter	chnology Corporation	SUM
		Carol R Jackson – Vice President – Ba Robert C Martens – Vice President an	Operations	Carpenter's subsidiaries and activities are organised under two business droups:	
		Stephen Peskosky – Vice President – F Russell E Reber Jr – Vice President – O		- Special Alloy Operations and	io I
		John L Rice – Vice President – Humar		- Performance Engineered Products.	
		David L Strobel - Senior Vice Preside		The Special Alloy Operations produce cast-wrought stainless steels, high- temperature alloys, high-strength steels (nickel-, iron- and cobalt-based).	2.0
		Tony R Thene – Senior Vice President		alloy steels, magnetic and controlled expansion alloys, tool and die steels, and controlled expansion alloys, tool and die steels,	
		Sunil Y Widge – Senior Vice President		and special-purpose alloys including solid statiliess reinforcing par.	
		Andrew T Ziolkowski – Senior Vice Pr		- Dynamet Incorporated, the company's titanium business unit	<u>د</u> ب
		Andy Operations and Latrobe Operation		- Cynanier Incorporated, the company's diamon business unit,	Ö.
Ba	ackground	Carpenter Technology Corporation (James Carpenter as the Carpenter s entity in 1937.		alloys, and – Amega West Services, which manufactures and rents downhole drilling tools and components. The company was acquired in January 2011.	4
		In 1928, Carpenter announced the w			Ö
		steel, Type 416 which is still used toda nickel free machining stainless steel in new products improved tool life and pr became synonymous with stainless s	Recent developments	In February 2012, Carpenter acquired Latrobe Speciality Metals, a manufacturer and distributor of high-performance, remelted materials for aerospace, defence, energy and other industrial applications. Operations are located in North America, Europe and Asia.	5.0
		The company is now a leader in de distribution of cast / wrought and powe alloys. Its specialty materials are in aerospace and defence industries as medical markets		In November 2012, Carpenter and Sandvik Materials Technology announced that they will dissolve their joint ventures Powdernet AB and Carpenter Powder Products AB, both located in Sweden. Instead the two companies agreed that the growth of their respective powder metal businesses would be better served by a supply agreement by which Carpenter will supply	۰ ب
				Sandvik. In April 2013, Carpenter entered a supply agreement that will provide	
				Rolls-Royce with advanced technology materials used in the manufacture of jet engines components. The five-year agreement runs until 2017 and is valued at approximately US\$75 million.	7.0
				Carpenter reported first quarter 2013 net income of US\$33 million from net sales of US\$582 million. Revenues increased in the aerospace and defense markets by 20% to US\$215 million, and in the energy market by 24% to US\$71 million year on year. Other markets such as transportation, and industrial and consumer applications remained flat. Revenues in medical applications declined by 26% to US\$25 million from Q1 2012 to Q1 2013.	8.0
					\$
140	D				ò
	and a design	a second second			
	1	SCT - II			10
1	15-1				
107					
10					APF
5	-				
6.	100	163			
-			TZMI	4	» ₽
5	-			171	Р. 2
	former 1	1 The			
	-		The state		
1 1	1-				a land

SAMPLE PAGES

SAMPLE EDITION

©TZMI 2013

Industrial applications

TITANIUM METAL ANNUAL REVIEW 2013

Approximately half of the total demand for titanium milled products is consumed by the industrial sector. Titanium is used extensively in a wide range of industries, primarily due to its corrosion and chemical resistance across a wide range of aggressive applications.

- The main industries that use titanium include:
- chemical processing plants,
- power generation for cooling water applications,
- oil and gas for a variety of seawater and storage applications,
- marine uses, particularly for cooling water system using seawater,
- desalination for industrial and drinking water, and
- the non-ferrous metallurgical sector.

The largest industrial application for titanium milled products is in the chemical sub-sector, which accounted for 52%, or 36,300 tonnes of the 69,500 tonnes total industrial demand in 2012. Power applications were the second largest segment, accounting for 11,800 tonnes, followed by desalination (6,400 tonnes), ships (4,400 tonnes) and metallurgical applications (4,100 tonnes).

The next most common use of milled titanium in the industrial sector is in heat exchangers, pipes, vessels and valves for the chemical, power and water treatment sectors.

TZMI forecast global demand for titanium milled products in the industrial sector to grow from 58,600 tonnes in 2010 to 86,600 tonnes by 2014, a 10.3% CAGR.

Global demand for industrial applications by end-use sector in 2012

©TZMI 2013

TZMI

REF 8857

EXECUTIVE SUMMARY

SUM

China is the largest consumer of titanium for the industrial sector. In 2012, China consumed almost half of the demand for titanium milled products in the industrial sector. Within this sector, 75% of China's demand came from the chemical sub-sector.

China's demand for titanium milled products in the industrial sector is forecast to grow by 12% CAGR from 2010 to 2014, estimated to consume 41,100 tonnes of product by 2014. The following figure presents the forecast for global titanium demand in the industrial sector, by location, from 2010 to 2014.

Global industrial sector titanium demand by location: 2010-2014

« VI

VII